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Abstract Among the four methods of the unit-subduced-cycle-index (USCI)
approach (Fujita in Symmetry and Combinatorial Enumeration in Chemistry. Springer,
Berlin, Heidelberg, 1991), the fixed-point-matrix (FPM) method and the partial-cycle-
index (PCI) method have been applied to the combinatorial enumeration of prismane
derivatives. These enumeration processes are based on the proligand-promolecule
model, which enables us to take account of achiral and chiral proligands. Prochirality
in a geometric meaning has been discussed in general by emphasizing the presence
of enantiospheric orbits in enumerated prismane derivatives. An enantiospheric orbit
accommodating chiral proligands (along with achiral ones) has been shown to exhibit
prochirality by using various prismane derivatives as examples. On the other hand,
the scope of pseudoasymmetry has been extended to cover such a rigid skeleton as
prismane in addition to a usual pseudoasymmetric center as a single atom, where the
proligand-promolecule model plays an essential role.

Keywords Prismane · Enumeration · Stereochemistry · Proligand · Promolecule ·
Prochiral · Pseudoasymmetry

1 Introduction

1.1 Problem of the 2D–3D extension implied in stereochemistry

From its foundation by van’t Hoff [1,2] and Le Bel [3] during the 1870s, stereochem-
istry has been based on the methodology in which two-dimensional (2D) structures

S. Fujita (B)
Shonan Institute of Chemoinformatics and Mathematical Chemistry, Kaneko 479-7 Ooimachi,
Ashigara-Kami-Gun, Kanagawa-Ken 258-0019, Japan
e-mail: shinsaku_fujita@nifty.com

123



J Math Chem (2012) 50:2202–2222 2203

(graphs) are extended into three-dimensional (3D) structures. The extension of 2D to
3D structures (the 2D–3D extension) has caused serious confusion in the progress of
stereochemistry. For example, the original concept of “asymmetric tetrahedral car-
bon” proposed by van’t Hoff was found to be insufficient in supporting the 2D–3D
extension by Fischer’s discovery of the stereoisomer number of trihydroglutaric acids
[4–6]. This was tentatively rationalized by the concept of “pseudoasymmetric carbon
centers” as exceptional cases of the original “asymmetric tetrahedral carbon”.

The problem of the 2D–3D extension (e.g., asymmetry vs. pseudoasymmetry)
revived during 1960s and 1970s, when the Cahn–Ingold–Prelog (CIP) system for
assigning RS-descriptors were founded. Although the CIP system claimed “Speci-
fication of Molecular Chirality” as found in the title of the original proposal [7],
the scope of the CIP system has covered “asymmetric” cases (chiral) and “pseudo-
asymmetric” cases (achiral). The problem of the CIP system has been avoided by the
revision of its basis from chirality to stereogenicity [8], after the detailed investigation
of pseudoasymmetry [9], as described concisely in the Nobel Prize lecture of Prelog
(1975) [10]. Although the term “stereogenic” was separated from chirality, the sep-
aration was incomplete, so that the term “stereogenic units” turned out to connote a
“chirality” plane, a “chirality” axis, “pseudoasymmetric” stereogenic units, etc. in an
entangled fashion. Hence, we are safe to say that the problem of the 2D–3D extension
has resulted in such transmutation of the term “chirality” as providing a misleading
inclusion, i.e., chirality ⊂ stereogenicity, although chirality and stereogenicity are
independent concepts.

The confusion about “chirality” and “stereogenicity”, which stemmed from the
problem of the 2D–3D extension as described above, has also influenced the connota-
tion of the term “prochiral” proposed as the basis of pro-R/pro-S-descriptors by Hanson
[11]. The usage of “prochirality” with reference to prostereoisomerism was strongly
suggested to be altogether abandoned by Mislow and Siegel [12] after emphasizing
the importance of the local symmetry. However, the entangled situations for “prochi-
rality” have not been settled even now in the conventional stereochemistry, as pointed
out in the IUPAC Recommendations 1996 [13].

As for quantitative discussions, on the other hand, Pólya’s theorem has been widely
used as a method for counting graphs and chemical compounds [14,15]. However,
Pólya’s theorem itself was incapable of counting chemical compounds as 3D struc-
tures, so that it suffered from the problem of the 2D–3D extension, as pointed out in a
review [16]. For example, Pólya’s theorem was successful to count alkanes as graphs
(or 2D structures), but Otter’s dissimilarity characteristic equation for trees was nec-
essary additionally in order to enumerate chiral and achiral alkanes as 3D structures
[17]. For the purpose of settling the problem of the 2D–3D extension, a more general
approach should be developed so as to improve Pólya’s theorem.

1.2 Proligand-promolecule model for settling the problem of the 2D–3D extension

The problem of the 2D–3D extension has been detailedly investigated by Fujita, where
the point-group theory and the permutation group theory are integrated to generate
the concept of subduction of coset representations [18,19] and the relevant concept
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of sphericities of orbits [20–23]. These concepts have been applied to symmetry-
itemized enumeration of 3D structures [24] and systematic classifications of organic
compounds [25] in terms of the unit-subduced-cycle-index (USCI) approach [26].

The crux for settling the problem of the 2D–3D extension in the USCI approach is
an explicit formulation of the proligand-promolecule model [27–29] where the sphe-
ricity of an orbit determines the mode of accommodating proligands [20–23]. As
summarized in Chapter 21 of Fujita’s book [26], the term proligand has been defined
as a 3D object that is structureless but has chirality and the term promolecule has been
defined as a 3D object that consists of a skeleton and such proligands. Such a skeleton
for the proligand-promolecule model can be selected from any rigid skeletons, e.g.,
a tetrahedral skeleton [30], an ethane skeleton [28,31], an oxirane skeleton [32], an
adamantane skeleton [27,30], a biphenyl skeleton [27], an allene skeleton [33,34],
D3h-skeletons such as a trigonal bipyramid, an iceane skeleton, and prismane skele-
ton [35], D6h-skeletons such as a benzene skeleton and a coronene skeleton [36], a
cyclohexane skeleton [37], a square planar skeleton [38], an octahedral skeleton [29],
a dodecahedrane skeleton [39,40], a triptycene skeleton [41], a fullerene-C60 skeleton
[42], and a cubane skeleton [43].

The above-mentioned shortage of Pólya’s theorem has been overcome by Fujita’s
proligand method [44–46], where the concept of sphericities of orbits has been
extended to the concept of sphericities of cycles, which means the adoption of the
proligand-promolecule model for the purpose of settling the problem of the 2D–3D
extension. Fujita’s proligand method has been applied to the enumeration of alkanes
and mono-substituted alkanes as 3D entities [47,48]. Fujita’s proligand method and
relevant methods have been applied for gross enumeration of cubane derivatives as
3D entities [49,50].

1.3 Aims of the present article

The main target of the present article is to discuss geometrical aspects of stereo-
chemistry by using a prismane skeleton, which serves as a polycyclic skeleton for the
proligand-promolecule model. After prismane derivatives are enumerated as 3D enti-
ties by the USCI approach based on the proligand-promolecule model, their chirality
and prochirality are discussed in a purely geometric meaning. In particular, because
the conventional terms “prochirality” and “pseudoasymmetry” have been influenced
noticeably by the confusion due to the transmuted “chirality”, they are reexamined
from a purely geometric viewpoint of chirality.

2 Geometrical properties of prismane derivatives

2.1 Orbits and coset representations for the D3h-point group

According to the proligand-promolecule model (cf. Chapter 21 of Ref. [26]), a pris-
mane skeleton 1 is regarded as a rigid skeleton which accommodates proligands to
give promolecules. The six vertices (substitution sites) of the prismane skeleton 1 are
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Fig. 1 Trigonal prismatic
skeleton with reference
numbering
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1

numbered sequentially as depicted in Fig. 1, where the mode of numbering is selected
arbitrarily without losing generality.

The prismane skeleton 1 has a three-fold axis (elements: C3 and C2
3 as well as

S3 and S5
3 ), three dihedral two-fold axes (elements: C2(1), C2(2), C2(3)), three mirror

planes containing the three-fold axis (elements: σv(1), σv(2), σv(3)), and a horizontal
mirror plane containing the three dihedral two-fold axes (element: σh). Thus the global
symmetry of 1 is characterized by the point group D3h of order 12, which is composed
of the following elements:

D3h = {I, C3, C2
3 , C2(1), C2(2), C2(3); σh, S3, S5

3 , σv(1), σv(2), σv(3)}, (1)

among which the six elements before a semicolon are (proper) rotations, while the six
elements after the semicolon are rotoreflections (improper rotations).

The point group D3h of the skeleton 1 is characterized by the following non-redun-
dant set of subgroups (SSG):

SSGD3h = {C1, C2, Cs, C′
s, C3, C2v, C3v, C3h, D3, D3h}, (2)

where each subgroup is selected as a representative of relevant conjugate subgroups
and where these subgroups are aligned in an ascending order of their orders. For exam-
ple, the subgroup Cs (order: |Cs | = 2) listed in Eq. (2) is a representative selected
from conjugate subgroups, i.e., {I, C2(1)} (= Cs), {I, C2(2)}, and {I, C2(3)}.

The six vertices (substitution sites) of the prismane skeleton 1 are equivalent under
the action of D3h so as to construct an orbit (an equivalence class). According to the
USCI approach [26], the orbit is governed by the coset representation D3h(/Cs), where
the subgroup Cs (= {I, C2(1)}) represents the local symmetry of each vertex of 1.

The coset representation D3h(/Cs) is calculated algebraically on the basis of a
coset decomposition of D3h by Cs , which gives the following set of permutations
represented as products of cycles [25]:

I ∼ (1)(2)(3)(4)(5)(6)

C3 ∼ (1 2 3)(4 5 6)

C2
3 ∼ (1 3 2)(4 6 5)

C2(1) ∼ (1 4)(2 6)(3 5)

C2(2) ∼ (1 6)(2 5)(3 4)

C2(3) ∼ (1 5)(2 4)(3 6)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(proper) rotations (3)
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σh ∼ (1 4)(2 5)(3 6)

S3 ∼ (1 5 3 4 2 6)

S5
3 ∼ (1 6 2 4 3 5)

σv(1) ∼ (1)(2 3)(4)(5 6)

σv(2) ∼ (1 3)(2)(4 6)(5)

σv(3) ∼ (1 2)(3)(4 5)(6)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

rotoreflections (improper rotations) (4)

where each product of cycles with an overline is concerned with a rotoreflection. Such
an explicit notation as an overline claims the alternation of chirality senses of proli-
gands at issue [38]. The degree of the coset representation D3h(/Cs) is calculated to
be 6 (i.e., |D3h |/|Cs | = 12/2 = 6), which is equal to the number of vertices con-
tained in the prismane skeleton 1. A full set of coset representations for D3h has been
reported in Ref. [25]. Prismane itself has been characterized by the set-of-coset-rep-
resentation (SCR) notation, i.e., D3h[2/Cs(C6, H6)], which means that the six carbon
atoms belong to a D3h(/Cs)-orbit and the six hydrogen atoms belong also to another
D3h(/Cs)-orbit [25]. If only substituents are taken into consideration, we use a sim-
plified SCR notation, D3h[/Cs(H6)].

2.2 Subduction of coset representations

According to the USCI approach [26,51], a promolecule derived from a skeleton has
a set of suborbits which are generated by the subdivisions of an original orbit. The
process of the subdivision is controlled by the subduction of a coset representation.
For example, a Cs-molecule is generated by fixing the corresponding mirror plane
containing the vertices 1 and 4, when an achiral proligand A is placed on the vertex 1
and five hydrogen atoms are placed on the remaining vertices to give a derivative 2 of
the constitution of substituents, H5A. This process of derivation is controlled by the
following subduction of the coset representation D3h(/Cs) into the subgroup Cs , i.e.,

D3h(/Cs) ↓ Cs = 2Cs(/C1)︸ ︷︷ ︸
{2,3}, {5,6}

+ 2Cs(/Cs)︸ ︷︷ ︸
{1}, {4}

. (5)

Note that the five hydrogen atoms are distributed into a one-membered Cs(/Cs)-orbit
(orbit size: |Cs |/|Cs | = 1/1 = 1) and two-membered Cs(/C1)-orbits (orbit size:
|Cs |/|C1| = 2/1 = 2). According to this subduction, promolecules 3 (H3A3) and 4
(H3App) having Cs-symmetry can be derived in a similar way to 2, where the letter A
represents an achiral proligand and the letters p and p represent a pair of enantiomeric
proligands in isolation.

The resulting promolecules (Fig. 2) are characterized by the following SCR nota-
tions:

Cs[2/C1(2H2); 2/Cs(A, H)] for 2 (6)

Cs[2/C1(A2, H2); 2/Cs(A, H)] for 3 (7)

Cs[2/C1(H2, pp); 2/Cs(A, H)] for 4 (8)
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Fig. 2 Examples of prismane
derivatives of Cs -symmetry. The
symbol A represents an achiral
proligand in isolation. A pair of
p and p̄ represents a pair of
enantiomeric proligands in
isolation

A

H

H

H

H

H

1

2

3

4

5

6

A

H

H

H

A

A

1

2

3

4

5

6

A

H

H

H

p

p

1

2

3

4

5

6

2 3 4

where carbon atoms are omitted for simplicity’s sake. The subduction data for a D3h-
group have been calculated algebraically [25] and summarized in Table 12 of Ref.
[25] and in Appendix C of [26].

2.3 Sphericities of orbits and chirality fittingness

According to the USCI approach [20,26,51], an orbit belonging to a coset represen-
tation G(/Gi ) is categorized into a homospheric (G and Gi : achiral), enantiospheric
(G: achiral; and Gi : chiral), or hemispheric orbit (G and Gi : chiral). The sphericity
controls the mode of accommodation of the orbit, which is called chirality fittingness
[20,26]. The chirality fittingness shows that a homospheric orbit accommodates a set
of achiral proligands of the same kind, and a hemispheric orbit accommodates a set of
chiral or achiral proligands of the same kind. An enantiospheric orbit exhibits a spe-
cial mode of chirality fittingness, because it is subdivided into two halves as a result
of the local chirality of the orbit at issue. If achiral proligands are taken into consid-
eration, the two halves of an enantiospheric orbit can accommodate a set of achiral
proligands of the same kind. If chiral proligands are taken into consideration, one half
accommodates a set of chiral proligands of a given chirality sense and the other half
accommodates a set of chiral proligands with an opposite chirality sense. The latter
mode of accommodation for chiral promolecules is found in the promolecule 4, where
one of the Cs(/C1)-orbits accommodates two hydrogens (as achiral proligands) and
the other accommodates a pair of p and p (as chiral proligands).

The two halves of an enantiospheric orbit are in an enantiotopic relationship, which
is extended to refer to such two halves, each having one or more substitution sites.
Note that the original connotation of term enantiotopic refers to a relationship between
two substitution sites. Although we are able to discuss geometric features of stereo-
chemistry by using such attributive terms as sphericities or by using such relational
terms as topicities, the former attributive terms are more decisive because they are
based on the concept of orbits.

3 Enumeration by the fixed-point-matrix (FPM) method

The USCI approach supports four methods of symmetry-itemized enumeration [26].
This section is devoted to the enumeration of prismane derivatives by means of the
fixed-point-matrix (FPM) method as one of the four methods of the USCI approach.
The FPM method is capable of treating any rigid skeletons (e.g., a prismane skeleton)
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because of the underlying proligand-promolecule model. Gross enumeration of pris-
mane derivatives (without symmetry-itemization) has been reported by applying
Fujita’s proligand method [52].

3.1 Sphericity indices and USCI-CFs

Let us assign a sphericity index ad , cd , or bd to an orbit according to its sphericity,
where a sphericity index ad is assigned to a d-membered homospheric orbit, a sphe-
ricity index cd to a d-membered enantiospheric orbit, and a sphericity index bd to a
d-membered hemispheric orbit. Thereby, the subduction of a coset representation is
characterized by a product of such sphericity indices, which is called a unit subduced
cycle index with chirality fittingness (USCI-CF). For example, the subduction rep-
resented by Eq. (5) is characterized by the corresponding USCI-CF, i.e., a2

1c2
2. The

complete list of such USCI-CFs (along with USCIs) for the point group D3h has been
calculated algebraically [25,35] and collected in a tabular form (a USCI-CF table) in
Appendix E of a book [26].

For the purpose of enumerating prismane derivatives, the D3h(/Cs)-row of such a
USCI-CF table (e.g., Table E.13 of Ref. [26]) is necessary. Thereby we obtain a formal
row vector as follows:

USCI-CFD3h(/Cs ) = (b6
1, b3

2, a2
1c2

2, c3
2, b2

3, a2c4, a2
3 , c6, b6, a6), (9)

where the USCI-CFs are aligned according to the order of the SSG (Eq. 2).

3.2 Enumeration of prismane derivatives by the FPM method

Suppose that proligands for vertex substitution are selected from the following proli-
gand inventory:

L = {H, A, W, X, Y, Z, p, p, q, q}, (10)

where the letters H, A, W, X, Y, and Z denote achiral proligands and a pair of p/p or
q/q denotes a pair of enantiomeric proligands in isolation (when detached).

Because we take only one orbit of the six substitution sites of 1 into consider-
ation, the USCI-CF vector of Eq. (9) (the D3h(/Cs)-row of the USCI-CF table) can be
regarded as the corresponding list of subduced cycle indices with chirality fittingness
(SCI-CFs). According to the FPM method [26], each SCI-CF (or USCI-CF in this
case) is capable of evaluating the number of fixed points on the action of the relevant
subgroup, where respective sphericity indices contained in the SCI-CF are substituted
by the following inventory functions:

ad = Hd + Ad + Wd + Xd + Yd + Zd (11)

bd = Hd + Ad + Wd + Xd + Yd + Zd + pd + pd + qd + qd (12)

cd = Hd + Ad + Wd + Xd + Yd + Zd + 2pd/2pd/2 + 2pd/2pd/2. (13)
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The power d/2 appearing in Eq. (13) is an integer because the subscript d of the sphe-
ricity index cd is always even in the light of the enantiosphericity of the corresponding
orbit [26].

These inventory functions for vertices (Eqs. 11–13) are introduced into an SCI-CF
to give a generating function, in which the coefficient of the term:

HnH AnA WnW XnX YnY ZnZ pnp pnpqnq qnq (14)

indicates the number of fixed promolecules to be counted, where the powers are non-
negative integers which satisfy the following relationship:

nH + nA + nW + nX + nY + nZ + np + np + nq + nq = 6 (15)

The term shown in Eq. (14) can be represented by the following partition:

[θ ] = [nH, nA, nW, nX, nY, nZ; np, np, nq, nq], (16)

where we can presume nH ≥ nA ≥ nW ≥ nX ≥ nY ≥ nZ ≥ 0 ; np ≥ np ≥ 0; and
nq ≥ nq ≥ 0 without losing generality.

For example, the SCI-CF a2
1c2

2 for the subgroup Cs (Eq. 9) generates the following
generating function by introducing the inventory functions (Eqs. 11–13):

gCs = H6 + 2(H5A + · · · ) + 3(H4A2 + · · · )
+2(H4AW + · · · ) + 4H4pp + · · · + (17)

Thereby, the coefficient 3 of the term 3(H4A2 +· · · ) in the right-hand side of Eq. (17)
indicates the number (ρ[θ]1Cs ) of fixed promolecules of the term H4A2 (and H4W2

etc.) or the partition [θ ]1 = [4, 2, 0, 0, 0, 0; 0, 0, 0, 0] under the action of the subgroup
Cs , i.e.,

ρ[θ]1Cs = 3. (18)

This process for obtaining ρ[θ]1Cs is repeated to cover all of the SCI-CFs collected in
Eq. (9) (corresponding to the subgroups collected in Eq. 2) so as to give the numbers
of fixed points, i.e., ρ[θ]1G j (G j ∈ SSGD3h ), which are collected to form a fixed-point
vector (FPV) as follows:

FPV1 =(ρ[θ]1C1 , ρ[θ]1C2 , ρ[θ]1Cs , . . . , ρ[θ]1D3h )=(15, 3, 3, 3, 0, 1, 0, 0, 0, 0). (19)

Note that the elements in Eq. (19) are aligned in accord with the appearance order of
Eq. (2). In a similar way, the FPVs for several partitions:

[θ ]1 = [4, 2, 0, 0, 0, 0; 0, 0, 0, 0] for H4A2 (20)

[θ ]2 = [4, 0, 0, 0, 0, 0; 2, 0, 0, 0] for H4p2 (21)

[θ ]3 = [4, 1, 1, 0, 0, 0; 0, 0, 0, 0] for H4AW (22)
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[θ ]4 = [4, 1, 0, 0, 0, 0; 1, 0, 0, 0] for H4Ap (23)

[θ ]5 = [4, 0, 0, 0, 0, 0; 1, 1, 0, 0] for H4pp (24)

[θ ]6 = [4, 0, 0, 0, 0, 0; 1, 0, 1, 0] for H4pq (25)

are calculated and collected in a matrix form (named a fixed-point matrix (FPM)) as
follows:

FPM1 =

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

15 3 3 3 0 1 0 0 0 0
15 3 0 0 0 0 0 0 0 0
30 0 2 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0
30 0 4 6 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (26)

where each row represents the FPVi for the partition [θ ]i (i = 1 to 6), e.g., the first
row corresponds to Eq. (19). The mark table for D3h and the inverse mark table have
been calculated algebraically [25,35] and collected in Table 6 of [25] and in Appendix
B of a book [26]. The inverse mark table is shown as follows as a matrix form:

M−1
D3h

= 1

12

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
−3 6 0 0 0 0 0 0 0 0
−3 0 6 0 0 0 0 0 0 0
−1 0 0 2 0 0 0 0 0 0
−1 0 0 0 3 0 0 0 0 0

6 −6 −6 −6 0 12 0 0 0 0
3 0 −6 0 −3 0 6 0 0 0
1 0 0 −2 −3 0 0 6 0 0
3 −6 0 0 −3 0 0 0 6 0

−6 6 6 6 6 −12 −6 −6 −6 12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(27)

According to the FPM method of the USCI approach, the multiplication of the FPM
(Eq. 26) by the inverse (Eq. 27) gives the following isomer-counting matrix (ICM):

ICM1 = FPM1 × M−1
D3h

=

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 0 1 0 0 0 0
1
2

3
2 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0
5
2 0 0 0 0 0 0 0 0 0
1 0 2 1 0 0 0 0 0 0
5
2 0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(28)

The value at the intersection between the [θ ]i -row (i = 1 to 6) and the G j th column
(G j ∈ SSGD3h ) represents the number of isomers with the constitution [θ ]i and G j -
symmetry. It should be noted that the value 1

2 or 3
2 in the [θ ]2-row of the matrix of

Eq. (28) should be interpreted to be 1 × 1
2 (H4p2 + H4p2) or 3 × 1

2 (H4p2 + H4p2),
which indicates the presence of one or three pairs of enantiomers H4p2 and H4p2,
because the term 1

2 (H4p2 + H4p2) corresponds to such a pair of enantiomers.
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4 Enumeration by the partial-cycle-index (PCI) method

This section is devoted to the enumeration of prismane derivatives by means of the
partial-cycle-index (PCI) method as one of the four methods of the USCI approach
[26]. The PCI method is capable of treating any rigid skeletons (e.g., a prismane
skeleton) because of the underlying proligand-promolecule model.

4.1 Enumeration of prismane derivatives by the PCI method

In order to solve the same problem of enumeration as described above, the PCI method
of the USCI approach calculates partial cycle indices with chirality fittingness (PCI-
CFs), where the alignment of SCI-CFs shown in Eq. (9) (USCI-CFD3h(/Cs )) is regarded
as a formal vector and multiplied by the inverse matrix (Eq. 27). Thereby, the following
formal calculation is possible:

USCI-CFD3h(/Cs ) × M−1
D3h

= (PCIC1 , PCIC2 , . . . , PCID3h ). (29)

Each element of the resulting formal vector represents a PCI-CF for each subgroup of
D3h as follows:

PCIC1 = 1

12
b6

1 − 1

4
b3

2 − 1

4
a2

1c2
2 − 1

12
c3

2 − 1

12
b2

3

+ 1

2
a2c4 + 1

4
a2

3 + 1

12
c6 + 1

4
b6 − 1

2
a6 (30)

PCIC2 = 1

2
b3

2 − 1

2
a2c4 − 1

2
b6 + 1

2
a6 (31)

PCICs = 1

2
a2

1c2
2 − 1

2
a2c4 − 1

2
a2

3 + 1

2
a6 (32)

PCIC′
s

= 1

6
c3

2 − 1

2
a2c4 − 1

6
c6 + 1

2
a6 (33)

PCIC3 = 1

4
b2

3 − 1

4
a2

3 − 1

4
c6 − 1

4
b6 + 1

2
a6 (34)

PCIC2v = a2c4 − a6 (35)

PCIC3v = 1

2
a2

3 − 1

2
a6 (36)

PCIC3h = 1

2
c6 − 1

2
a6 (37)

PCID3 = 1

2
b6 − 1

2
a6 (38)

PCID3h = a6 (39)

The inventory functions for vertex substitution (Eqs. 11–13) are introduced into
the PCI-CFs (Eqs. 30–39). The resulting equations are expanded to give generating
functions of respective subsymmetries (cf. SSGD3h of Eq. 2) for counting derivatives
in a symmetry-itemized fashion, where the coefficient of the term (Eq. 14) gives the
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number of prismane derivatives as 3D objects. The coefficients of terms appearing
in generating functions for respective subgroups are summarized in Table 1, where
the rows are concerned with the terms (Eq. 14), which are represented by partitions
(Eq. 16), while the columns are concerned with respective subgroups. Values in the row
of a partition with an asterisk (*) should be duplicated, because the partition with (*),
e.g., [5,0,0,0,0,0;1,0,0,0]* for the constitution H5p, is accompanied with the partition
of the corresponding enantiomer, e.g., [5,0,0,0,0,0;0,1,0,0]* for the constitution H5p,
although the latter is omitted. Note that a pair of enantiomers are counted once. Thus
the value 1/2 at the intersection between the [5,0,0,0,0,0;1,0,0,0]*-row and C1-column
in Table 1 should be duplicated to give the number 1 in accord with the interpretation
represented by the formula: 1 × 1

2 (H5p + H5p).

5 Discussions

5.1 Geometric prochirality

The FPM method (the [θ ]1-row of Eq. 28) and the PCI method (the [4, 2, 0, 0, 0, 0; 0, 0,

0, 0]-row of Table 1) indicates the presence of one pair of enantiomeric C2-promole-
cules, one Cs-promolecule, and one C2v-promolecule for prismanes with the consti-
tution H4A2. They are depicted in Fig. 3.

According to the USCI approach [26], prochirality in a geometric meaning (geo-
metric prochirality) is linked with the presence of a least one enantiospheric orbit, as
stated in Ref. [20]:

An enantiospheric orbit is capable of separating into two hemispheric orbits of
the same length under a chiral environment, whether the change is reversible
or irreversible. A prochiral compound is defined as an achiral compound has at
least one enantiospheric orbit.

This definition of prochirality is based on the sphericities of orbits, which are deter-
mined in a purely geometric fashion, so that the prochirality at issue is referred to as
geometric prochirality. According to the membership criterion for topicity proposed
in Ref. [20], the two halves producing the two hemispheric orbits are determined to be
enantiotopic to each other in an achiral compound. A more comprehensive discussion
on prochirality [53] and reviews on stereochemical features of prochirality [22,23]
have appeared on the basis of the concept of sphericities.

The Cs-promolecule 6 is generated in accord with the subduction represented by
Eq. 5 or with the corresponding USCI-CF a2

1c2
2 (Eq. 9). Two achiral proligands A’s

occupy the two-membered enantiospheric Cs(/C1)-orbit, i.e., {5, 6}, two hydrogens
(as achiral proligands) occupy the other two-membered enantiospheric Cs(/C1)-orbit,
i.e., {2, 3}, and the remaining hydrogens separately occupy two one-membered homo-
spheric Cs(/Cs)-orbits, i.e., {1} and {4}, one by one. The presence of two enantiospher-
ic orbits indicates that the Cs-promolecule 6 is prochiral in a geometric meaning. The
two proligands A’s (or the two hydrogens) of the enantiospheric orbit are differentiated
under a chiral condition so as to generate promolecules of enantiomeric relationships.
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Table 1 Numbers of prismane derivatives

C1 C2 Cs C′
s C3 C2v C3v C3h D3 D3h

[6,0,0,0,0,0;0,0,0,0] 0 0 0 0 0 0 0 0 0 1

[5,1,0,0,0,0;0,0,0,0] 0 0 1 0 0 0 0 0 0 0

[5,0,0,0,0,0;1,0,0,0]* 1/2 0 0 0 0 0 0 0 0 0

[4,2,0,0,0,0;0,0,0,0] 0 1 1 0 0 1 0 0 0 0

[4,0,0,0,0,0;2,0,0,0]* 1/2 3/2 0 0 0 0 0 0 0 0

[4,1,1,0,0,0;0,0,0,0] 2 0 1 0 0 0 0 0 0 0

[4,1,0,0,0,0;1,0,0,0]* 5/2 0 0 0 0 0 0 0 0 0

[4,0,0,0,0,0;1,1,0,0] 1 0 2 1 0 0 0 0 0 0

[4,0,0,0,0,0;1,0,1,0]* 5/2 0 0 0 0 0 0 0 0 0

[3,3,0,0,0,0;0,0,0,0] 1 0 1 0 0 0 1 0 0 0

[3,0,0,0,0,0;3,0,0,0]* 3/2 0 0 0 1/2 0 0 0 0 0

[3,2,1,0,0,0;0,0,0,0] 4 0 2 0 0 0 0 0 0 0

[3,2,0,0,0,0;1,0,0,0]* 5 0 0 0 0 0 0 0 0 0

[3,1,0,0,0,0;2,0,0,0]* 5 0 0 0 0 0 0 0 0 0

[3,0,0,0,0,0;2,1,0,0]* 5 0 0 0 0 0 0 0 0 0

[3,1,1,1,0,0;0,0,0,0] 10 0 0 0 0 0 0 0 0 0

[3,1,1,0,0,0;1,0,0,0]* 10 0 0 0 0 0 0 0 0 0

[3,1,0,0,0,0;1,1,0,0] 8 0 4 0 0 0 0 0 0 0

[3,1,0,0,0,0;1,0,1,0]* 10 0 0 0 0 0 0 0 0 0

[3,0,0,0,0,0;1,1,1,0]* 10 0 0 0 0 0 0 0 0 0

[2,2,1,1,0,0;0,0,0,0] 14 0 2 0 0 0 0 0 0 0

[2,2,1,0,0,0;1,0,0,0]* 15 0 0 0 0 0 0 0 0 0

[2,2,0,0,0,0;1,1,0,0] 12 0 4 2 0 0 0 0 0 0

[2,2,0,0,0,0;1,0,1,0]* 15 0 0 0 0 0 0 0 0 0

[2,1,1,0,0,0;2,0,0,0]* 15 0 0 0 0 0 0 0 0 0

[2,1,0,0,0,0;2,1,0,0]* 15 0 0 0 0 0 0 0 0 0

[2,1,0,0,0,0;2,0,1,0]* 15 0 0 0 0 0 0 0 0 0

[2,0,0,0,0,0;2,1,1,0]* 15 0 0 0 0 0 0 0 0 0

[2,1,1,1,1,0;0,0,0,0] 30 0 0 0 0 0 0 0 0 0

[2,1,1,1,0,0;1,0,0,0]* 30 0 0 0 0 0 0 0 0 0

[2,1,1,0,0,0;1,1,0,0] 28 0 4 0 0 0 0 0 0 0

[2,1,0,0,0,0;1,1,1,0]* 30 0 0 0 0 0 0 0 0 0

[2,0,0,0,0,0;1,1,1,1] 26 0 4 4 0 0 0 0 0 0

[1,1,1,1,1,1;0,0,0,0] 60 0 0 0 0 0 0 0 0 0

[1,1,1,1,0,0;1,0,1,0]* 60 0 0 0 0 0 0 0 0 0

[1,1,1,0,0,0;1,1,1,0]* 60 0 0 0 0 0 0 0 0 0

[1,1,0,0,0,0;1,1,1,1] 56 0 8 0 0 0 0 0 0 0

[0,0,0,0,0,0;6,0,0,0]* 0 0 0 0 0 0 0 0 1/2 0

[0,0,0,0,0,0;5,1,0,0]* 1/2 0 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;5,0,1,0]* 1/2 0 0 0 0 0 0 0 0 0
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Table 1 continued

C1 C2 Cs C′
s C3 C2v C3v C3h D3 D3h

[1,0,0,0,0,0;5,0,0,0]* 1/2 0 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;4,2,0,0]* 1/2 3/2 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;4,0,2,0]* 1/2 3/2 0 0 0 0 0 0 0 0

[2,0,0,0,0,0;4,0,0,0]* 1/2 3/2 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;4,1,1,0]* 5/2 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;4,1,0,0]* 5/2 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;4,0,1,0]* 5/2 0 0 0 0 0 0 0 0 0

[1,1,0,0,0,0;4,0,0,0]* 5/2 0 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;3,3,0,0] 1 0 0 1 0 0 0 1 0 0

[0,0,0,0,0,0;3,0,3,0]* 3/2 0 0 0 1/2 0 0 0 0 0

[3,0,0,0,0,0;3,0,0,0]* 3/2 0 0 0 1/2 0 0 0 0 0

[0,0,0,0,0,0;3,2,1,0]* 5 0 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;3,1,2,0]* 5 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;3,2,0,0]* 5 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;3,0,2,0]* 5 0 0 0 0 0 0 0 0 0

[2,0,0,0,0,0;3,1,0,0]* 5 0 0 0 0 0 0 0 0 0

[2,0,0,0,0,0;3,0,1,0]* 5 0 0 0 0 0 0 0 0 0

[2,1,0,0,0,0;3,0,0,0]* 5 0 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;3,1,1,1]* 10 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;3,1,1,0]* 10 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;3,0,1,1]* 10 0 0 0 0 0 0 0 0 0

[1,1,0,0,0,0;3,1,0,0]* 10 0 0 0 0 0 0 0 0 0

[1,1,0,0,0,0;3,0,1,0]* 10 0 0 0 0 0 0 0 0 0

[1,1,1,0,0,0;3,0,0,0]* 10 0 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;2,2,2,0]* 6 3 0 0 0 0 0 0 0 0

[2,0,0,0,0,0;2,2,0,0] 5 2 1 1 0 2 0 0 0 0

[2,0,0,0,0,0;2,0,2,0]* 6 3 0 0 0 0 0 0 0 0

[2,2,0,0,0,0;2,0,0,0]* 6 3 0 0 0 0 0 0 0 0

[0,0,0,0,0,0;2,2,1,1] 13 0 0 4 0 0 0 0 0 0

[0,0,0,0,0,0;2,1,2,1]* 15 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;2,2,1,0]* 15 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;2,2,0,1]* 15 0 0 0 0 0 0 0 0 0

[1,1,0,0,0,0;2,2,0,0] 13 0 4 0 0 0 0 0 0 0

[1,1,0,0,0,0;2,0,2,0]* 15 0 0 0 0 0 0 0 0 0

[2,0,0,0,0,0;2,1,1,0]* 15 0 0 0 0 0 0 0 0 0

[2,1,0,0,0,0;2,1,0,0]* 15 0 0 0 0 0 0 0 0 0

[2,1,0,0,0,0;2,0,1,0]* 15 0 0 0 0 0 0 0 0 0

[2,1,1,0,0,0;2,0,0,0]* 15 0 0 0 0 0 0 0 0 0

[1,0,0,0,0,0;2,1,1,1]* 30 0 0 0 0 0 0 0 0 0

[1,1,0,0,0,0;2,1,1,0]* 30 0 0 0 0 0 0 0 0 0

[1,1,0,0,0,0;2,0,1,1]* 30 0 0 0 0 0 0 0 0 0
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Table 1 continued

C1 C2 Cs C′
s C3 C2v C3v C3h D3 D3h

[1,1,1,0,0,0;2,1,0,0]* 30 0 0 0 0 0 0 0 0 0

[1,1,1,0,0,0;2,0,1,0]* 30 0 0 0 0 0 0 0 0 0

[1,1,1,1,0,0;2,0,0,0]* 30 0 0 0 0 0 0 0 0 0

[1,1,1,1,0,0;1,1,0,0] 60 0 0 0 0 0 0 0 0 0

Fig. 3 Prismane derivatives of the constitution H4A2 (partition [θ ]1 = [4, 2, 0, 0, 0, 0; 0, 0, 0, 0]). The
letter A represents an achiral proligand in isolation

The C2v-promolecule 7 provides us with an extended prochirality in a geometric
meaning. The C2v-promolecule 7 is fixed (stabilized) under the action of the C2v-
group:

C2v = {I, C2(1), σh, σv(1)}
∼ {(1)(2)(3)(4)(5)(6), (1 4)(2 6)(3 5),

(1 4)(2 5)(3 6), (1)(2 3)(4)(5 6)}, (40)

which exhibits a separation into two orbits, {1, 4} and {2, 3, 5, 6}. According to
Table 12 of Ref. [25] (Appendix C.13 of [26] contains a misprint) from a view-
point of subduction, the C2v-promolecule 7 is generated in terms of the following
subduction:

D3h(/Cs) ↓ C2v = C2v(/C1)︸ ︷︷ ︸
{2,3,5,6}

+ C2v(/Cs)︸ ︷︷ ︸
{1,4}

, (41)

which correspond to the USCI-CF a2c4 (Eq. 9). Two achiral proligands A’s occupy
the two-membered homospheric C2v(/Cs)-orbits, i.e., {1, 4}, while four hydrogens
(as achiral proligands) occupy the four-membered enantiospheric C2v(/C1)-orbit, i.e.,
{2, 3, 5, 6}. The presence of one enantiospheric orbit indicates that the C2v-promole-
cule 7 is prochiral in a geometric meaning.

Prochirality due to the presence of enantiospheric orbit(s) is a clue for testify-
ing the possibility of chiral (asymmetric) syntheses. For example, a potential chiral
synthesis generating a C2-promolecule (9 or 9) from a C2v-promolecule (8) is shown

123



2216 J Math Chem (2012) 50:2202–2222

Fig. 4 Participation of an enantiospheric orbit of four bromine atoms in a potential chiral synthesis

in Fig. 4, where four bromine atoms in the four-membered enantiospheric C2v(/C1)-
orbit are divided into two halves under a chiral condition (such as the attack of a chiral
reagent). The starting C2v-promolecule (8) is generated by the subduction of Eq. (41)
in a parallel way to the C2v-promolecule 7. Note that the constitution H2Br4 (or the
term H2Br4) also corresponds to the partition [θ ]1 (= [4, 2, 0, 0, 0, 0; 0, 0, 0, 0]). The
product C2-promolecules (9/9) are generated by the same subduction as the C2-pro-
molecules (5/5). This type of potential chiral syntheses has been discussed by using
ethylene oxides as examples in Ref. [20] and in Chapter 10 of Ref. [26].

Geometrically speaking, the potential chiral synthesis shown in Fig. 4 is regarded as
a further restriction of the C2v-symmetry to the C2-symmetry, which is characterized
by the subduction of the coset representation C2v(/C1) as follows:

C2v(/C1) ↓ C2 = 2C2(/C1)︸ ︷︷ ︸
{2,6}, {3,5}

, (42)

which is collected in Table C.5 of Appendix C of Ref. [26]. Thereby, the C2v(/C1)-orbit
of the four bromine atoms in 8, i.e., {2, 3, 5, 6}, is subdivided into two C2(/C1)-orbits,
i.e., {2, 6} and {3, 5}, either of which is attacked by hydrolysis reagents under a chiral
condition.

In the conventional terminology, prochirality has been detected a combination of
the terms enantiotopic (relationship) and chirotopic (local symmetry) proposed by
Mislow and Siegel [12], where the original term enantiotopic is concerned mainly
with a relationship between two objects and the original term chirotopic is concerned
with the local symmetry as an attribute of a single site. The necessity of this com-
bination of a relational term with an attributive term stems from the fact that the
conventional terminology has lacks the concepts of orbits and sphericities.

In contrast, prochirality due to the presence of enantiospheric orbit(s) is based on
the concepts of orbits and their sphericities, where the terms sphericities are concerned
with the attributes of orbits governed by coset representations. This feature is effective
to discuss such complicated cases as shown in Fig. 4. Note that the derivation of 7 or
8 from a prismane skeleton 1 is characterized by the subduction of Eq. (41), while the
derivation of chiral products 9/9 from an achiral prismane derivative 8 is characterized
by the subduction of Eq. (42). Thus, these two types of processes for derivation can
be discussed commonly by the subduction and sphericities of orbits.
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Fig. 5 Prismane derivatives of
the constitution H4pp (partition
[θ ]5 = [4, 0, 0, 0, 0, 0;
1, 1, 0, 0]). A pair of p and p̄
represents a pair of enantiomeric
proligands in isolation

5.2 Extended pseudoasymmetry

The FPM method (the [θ ]5-row of Eq. 28) and the PCI method (the [4, 0, 0, 0, 0, 0; 1, 1,

0, 0]-row of Table 1) indicates the presence of one pair of enantiomeric C1-promole-
cules, two Cs-promolecules, and one C′

s-promolecule for prismanes with the consti-
tution H4pp. They are depicted in Fig. 5.

The two Cs-promolecules 11 and 12 are generated in terms of the subduction of
Eq. (5) or of the corresponding USCI-CF a2

1c2
2 (Eq. 9). A pair of p/p as enantiomeric

proligands in isolation occupy the two-membered enantiospheric Cs(/C1)-orbit, i.e.,
{5, 6}, two hydrogens (as achiral proligands) occupy the other two-membered enan-
tiospheric Cs(/C1)-orbit, i.e., {2, 3}, and the remaining hydrogens separately occupy
two one-membered homospheric Cs(/Cs)-orbits, i.e., {1} and {4}, one by one. The
presence of two enantiospheric orbits indicates that the Cs-promolecule 11 or 12 is
prochiral in a geometric meaning. The two proligands (p and p) or the two hydrogens
of the enantiospheric orbit are differentiated under a chiral condition so as to generate
promolecules of enantiomeric relationships.

Each of the two Cs-promolecules 11 and 12 is fixed (stabilized) under the action
of the following Cs-group:

Cs = {I, σv(1)} ∼ {(1)(2)(3)(4)(5)(6), (1)(2 3)(4)(5 6)}, (43)

which is a subgroup of D3h shown in Eqs. (3) and (4). These Cs-promolecules are
interchangeable to each other under the action of the following C̃s-group:

C̃s = {I, σ̃v(1)} ∼ {(1)(2)(3)(4)(5)(6), (1)(2 3)(4)(5 6)}, (44)
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which is accompanied by no alteration of ligand chirality senses. In other words, the
two Cs-promolecules 11 and 12 exhibit pseudoasymmetry in an extended meaning.
It should be noted that a more extended group (i.e., an RS-stereoisomeric group on
the basis of the stereoisogram approach) is necessary to comprehend this type of
pseudoasymmetry, as discussed in an accompanying paper of this series.

On the other hand, the C′
s-promolecule 13 is generated in terms of the following

subduction:

D3h(/Cs) ↓ C′
s = 3C′

s(/C1)
︸ ︷︷ ︸

{1,4}, {2,5}, {3,6}
(45)

which correspond to USCI-CF c3
2 (Eq. 9). A pair of p/p as enantiomeric proligands in

isolation occupy the two-membered enantiospheric C′
s(/C1)-orbit, i.e., {1, 4}, while

two pairs of hydrogens (as achiral proligands) occupy the other two-membered enan-
tiospheric C′

s(/C1)-orbits, i.e., {2, 5}, and {3, 6}. The presence of three enantiospheric
orbits indicates that the C′

s-promolecule 13 is prochiral in a geometric meaning. The
two proligands (p and p) or the two hydrogens of each enantiospheric orbit are dif-
ferentiated under a chiral condition so as to generate promolecules of enantiomeric
relationships.

The C′
s-promolecule 13 is fixed (stabilized) under the action of the following C′

s-
group:

C′
s = {I, σh} ∼ {(1)(2)(3)(4)(5)(6), (1 4)(2 5)(3 6)}, (46)

which is a subgroup of D3h shown in Eqs. (3) and (4). The Cs-promolecule 13 is
converted into a homomer, which is identical with the original 13 under the action of
the following C̃′

s-group:

C̃′
s = {I, σ̃h} ∼ {(1)(2)(3)(4)(5)(6), (1 4)(2 5)(3 6)}, (47)

which is accompanied by no alteration of ligand chirality senses. In other words, the
Cs-promolecule 13 exhibit a meso-type behavior in an extended meaning. It should
be noted that a more extended group (i.e., an RS-stereoisomeric group on the basis of
the stereoisogram approach) is necessary to comprehend this meso-type behavior, as
discussed in an accompanying paper of this series.

As promolecules having the constitution H4p2 or H4p2 ([θ ]2 = [4, 0, 0, 0, 0, 0; 2, 0,

0, 0]), Fig. 6 shows one pair of C1-promolecules (14/14) and three pairs of C2-promol-
ecules (15/15, 16/16, and 17/17) in accord with the enumeration results by the FPM
method (the [θ ]2-row of Eq. 28) and by the PCI method (the [4, 0, 0, 0, 0, 0; 2, 0, 0, 0]-
row of Table 1). Note that each number of promolecules appears as a multiple of the
term 1

2 (H4p2 + H4p2), because a pair of enantiomers is counted once.
The C1-promolecule 14 is converted into 14 under the action of Cs (Eq. 43), while

14 is fixed (stabilized) under the action of C̃s (Eq. 44). This behavior is an extension
of the “prochirality” proposed by Hanson [11], where 14 is already chiral in spite of
its “prochirality”. This behavior should be characterized by pro-RS-stereogenicity on
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Fig. 6 Prismane derivatives of the constitution H4p2 or H4p2 (partition [θ ]2 = [4, 0, 0, 0, 0, 0; 2, 0, 0, 0]).
A pair of p and p̄ represents a pair of enantiomeric proligands in isolation

the basis of the stereoisogram approach, as discussed in an accompanying paper of
this series.

The C2-promolecule 15 is converted into its enantiomer 15 under the action of the
C2v-group (Eq. 40). When we take account of permutations with no ligand reflection,
we obtain the following group:

C̃2v = {I, C2(1), σ̃h, σ̃v(1)}
∼ {(1)(2)(3)(4)(5)(6), (1 4)(2 6)(3 5),

(1 4)(2 5)(3 6), (1)(2 3)(4)(5 6)}, (48)

The C2-promolecule 15 (or 15) is fixed (stabilized) under the action of C̃2v (Eq. 48).
This behavior is an extension of the “prochirality” proposed by Hanson [11], where
15 is already chiral in spite of its “prochirality”. A parallel discussion holds true for
a pair of C2-promolecules 16/16 or a pair of C2-promolecules 17/17. The behaviors
of these pairs should be characterized by pro-RS-stereogenicity on the basis of the
stereoisogram approach, as discussed in an accompanying paper of this series.

5.3 Geometric prochirality and extended pseudoasymmetry

Extended pseudoasymmetry is accompanied by geometric prochirality (prochirality
in a purely geometric meaning) because of the presence of one or more enantiospher-
ic orbits. For example, a C2v-promolecule 18 (or 20) is fixed (stabilized) under the
C2v-group (Eq. 40). Note that the [2, 0, 0, 0, 0, 0; 2, 2, 0, 0]-row of Table 1 shows the
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Fig. 7 Participation of an enantiospheric orbit of p2p2 in a potential chiral synthesis

presence of two C2v-promolecules. The six substitution sites of 18 (or 20) are divided
into two orbits according to the subduction represented by Eq. (41). The resulting four-
membered C2v(/C1)-orbit {2, 3, 5, 6} accommodates two p’s and two p’s according
to its enantiosphericity. Because of the enantiosphericity, the C2v-promolecule 18 (or
20) is prochiral so as to be capable of undergoing chiral syntheses shown in Fig. 7.

The potential chiral syntheses shown in Fig. 7 are characterized by the subduction
represented by Eq. (42). Thereby, the C2v(/C1)-orbit of p2p2 in 18 (or 20) is subdi-
vided into two C2(/C1)-orbits, i.e., {2, 6} and {3, 5}, either of which is attacked by
appropriate reagents (X) under a chiral condition, as shown in Fig. 7.

Extended pseudoasymmetry between 18 and 20 is ascribed to their interconvert-
ibility under the action of the C̃2v-group (Eq. 48). It should be noted again that a more
extended group (i.e., an RS-stereoisomeric group on the basis of the stereoisogram
approach) is necessary to comprehend this type of pseudoasymmetry, as discussed in
an accompanying paper of this series.

6 Conclusions

The FPM method and PCI method of the USCI approach have been applied to the
combinatorial enumeration of prismane derivatives on the basis of the proligand-pro-
molecule model, which enables us to take account of achiral and chiral proligands.
Prochirality in a geometric meaning has been discussed in general by emphasizing the
presence of enantiospheric orbits in enumerated prismane derivatives. In particular,
chiral proligands along with achiral ones are clarified to participate in the appearance
of prochirality. On the other hand, the scope of pseudoasymmetry has been extended
to cover such a rigid skeleton as prismane in place of a usual pseudoasymmetric
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center as a single atom, where the proligand-promolecule model works well as a
key.
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